About

DEPHAN solid-state optical detectors provide 10x increase in dynamic range and 5x increase in sensitivity, while decreasing cross-talk by 90%, enabling superior performance of LIDAR, PET and other optical analysis systems.

 
 

We are a start-up company consisting of physicists, technologists and entrepreneurs.

We work with silicon foundries to manufacture our DEPHAN detectors in accordance with our proprietary IP, processes and specifications.

We are interested in partnerships, including joint patent solutions, with manufacturers of microelectronics and optoelectronics devices, as well as developers of optical information systems who are looking for a competitive advantage in LIDAR, PET and other applications.

Product

New generation of solid-state state photomultiplier for detecting and analyzing optical signals in the visible range with a wide dynamic range along with high sensitivity, short recovery time, and low noise.

Combination of such parameters should significantly increase market share of the solid-state photomultipliers in medical applications, biotechnology, industrial and radiation measurements, high-energy physics, and pollution monitoring, thus facilitating replacement of vacuum photomultiplier tubes (PMTs), which have no alternatives nowadays.

Any existing solid-state device is a trade-off between the two key parameters: dynamic range and photosensitive area. Dynamic range is governed by the cells density while photosensitive area determines photo-detection efficiency (PDE). To escape from this trade-off we developed a new design DEPHAN solid-state photomultiplier with avalanche miniaturized amplifying channels.


Pilot prototypes of the solid-state photomultipliers DEPHAN with 1×1 mm2 surface area have amplification channels (cells) density 4.4×104 mm-2 with light-sensitive area (fill-factor) 0.83.

For comparison, the main competitor in dynamic range of the developed device has surface area 1×1 mm2 with 104 pixels and fill-factor 0.33.

In devices available on the market, increase of cells density is limited by crosstalk that becomes the main source of noise. Preliminary measurements of crosstalk in DEPHAN devises have shown

very low crosstalk – less than 3%

Thus, it makes possible further increase of cell density and, consequently, and dynamic range in future.

Currently manufacture of DEPHAN prototype devices is under way with the following parameters:
  • Cells density — up to 105 mm-2;
  • Fill-factor — up to 0.80;
  • Crosstalk < 3%;
  • Pulse pair resolution   1 ns.

Patent applications for the developed devices are pending the Russian Federal Service for the Intellectual Property (including application under the Patent Cooperation Treaty, PCT).

Applications

Replacement of vacuum photomultipliers (PMTs) with a solid-state – one of the DEPHAN’s goals.

Based on design potential and the first positive results of testing the DEPHAN pilot prototypes we can expect following applications:

Medical Equipment

  • Positron Emission Tomography (PET)
  • Gamma cameras
  • X-ray image diagnostic equipment

Biotechnology

  • Flow cytometers
  • DNA microarray scanners/sequencers
  • Luminescent/fluorescent immunoassay

LiDARs

  • Automotive
  • Robotics
  • Mapping

Industrial Measurement

  • Laser scanners
  • Thickness gauges

Spectrophotometry

  • ­UV, visible and infrared spectroscope
  • ­Atomic absorption/emission spectrometers
  • Fluorospectrometers

Aerospace Applications

  • X-ray astronomy
  • Ozone measurement
  • Aircraft monitoring systems

Timeline

1990s

The two principal technical solutions proposed and realized by the authors of the project Dr. Shubin and Dr. Shushakov in the middle of the 1990s made it possible to solve the ultimate problem of signal detection: analog detection with single-electron sensitivity threshold.

The first one is effect of self-calibration of current cord provoked by a single electron in avalanche structure with negative feedback in conditions of above-critical voltage. This effect allows one to realize a single-electron threshold amplifier with high response probability and stable calibrated output signal.

The second is utilization of avalanche structure with negative feedback in the above-critical “Geiger” mode and merging output signals emerging from such structure of threshold single electron amplifiers for the purpose of analog signals detection.

Beginning of 2000

Since the beginning of 2000s the research group under supervision of Dr. Shubin develops alternative to conventional SiPMs approach to design of multicell solid-state photomultipliers with wide dynamic range.

2013

The Russian Quantum Center opens a new research direction for DEPHAN analog photodetectors with increased dynamic range, high sensitivity, high speed and low intrinsic noise.

2014

DEPHAN is registered as a company. Start of interaction with the fab.

2015

Key elements of manufacturing technology are set up and refined on top of standard fab processes.

Project is presented before Skolkovo Foundation grant committee and wins 3 year grant.

2016

Applications for Patent Cooperation Treaty (PCT) and Russian patents are filed.

Technology is proven experimentally: experimental sample is produced with 1х1 mm2 surface area, 4.4х104 mm-2 amplification channels (cells) density and light-sensitive area (fill-factor) of 83%.

July 2017

Test sample of SSPM DEPHAN is obtained.

August 2017

Preliminary evaluation of test sample against commercial SSPMs in typical application tasks (LiDAR, Hi-Res PET) displays the potential of new technology in a range of applications.

Preliminary data-sheet of the new SSPM is composed based on test sample measurements.

November 2017

Patent applications are submitted for national phases (USA, Japan, and Europe).

February 2018

Device construction and main achieved parameters are presented and published on Photonics West 2018.

Q3 2018

Manufacture of test samples with enhanced parameters customized on area and spectral response for several applications, as well as of the 2×2 matrix prototype.

Q4 2018 .. Q1 2019

Constuction of demonstrational LiDAR device utilizing the test sample of SSPM DEPHAN.

Evaluation of customized devices for several applications (LiDAR, Medical Imaging, 3D imaging, Nuclear Science). Publication of the results.

Q2 2019

Manufacture of customized test samples optimized after results of evaluation.

End of Skolkovo grant.

Q3 2019

Start of industrial manufacture.

Contacts

Business-center "Ural", 100, Novaya street, Skolkovo, Moscow, 143025 RUSSIA. Show on Google Maps
mail(at)dephandetectors.com
55.69838896906978 37.39428520202637